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Consider the word FCUK. It is just one transposition away from a more colorful word. 
Input: Pattern of length 'n'. The quality of a match is the total distance the letter shave to 
move.

F   C   U   K
Distance = 2

F   C   K   U

a    b    b    a    a    b
Distance = 4

b    a    b    a   b    a

a    b    b    c    a    b
Distance = 6

b    a    b    a   b    c

It was pointed out that this was the Earth Mover's metric on strings. We need to answer 
the question, “What is the best match for our pattern in the original string?”. 

Observation: The distance is always twice the number of inversions.
Let d be the distance between the strings.



    N

M

Assumption: The alphabet is constant.
Observation: For any given offset, we can calculate the best match.

Naïve method: Perform a bipartite matching for each window.
This is of O(NM3) complexity. 

Once we assume the alphabet to have just 0's and 1's, the problem reduces to the necklace 
problem we solved earlier in the semester. 

Observation: Whether a d=0 match exists or not can be detected in O(n+m) time using 
any of the popular string matching methods. 

For binary strings, we were able to solve the problem in O(NM) time. We should be able 
to replicate this for this problem, assuming the alphabet is constant. 

As we observed for the necklace problem earlier, a greedy matching will be optimal in 
this case. This is because in any given window, matching the leftmost 1 in the window 
with the leftmost 1 in the search string is always optimal. We cannot get a better result by 
matching another 1 in the search string.

This assumption should let us reduce the O(NM3) time to O(NM) time. 



Idea: Let us look at windows where the character content is a permutation of the search 
string. 

To do this, we keep an incremental count of how many many characters of each type are 
there in our current window. Since the alphabet is constant, we can check this in linear 
time. 

Observation: We have all the windows with a permutation of the search string in linear 
time. Let there be W such candidate windows obtained in O(N) time.  

We need O(N + WM) time to solve the problem. 

Idea: Can we improve this using some incremental technique? 

Observation: If the windows did not overlap, W could be less than N/M and we would 
solve the problem in linear time. The value of W could be as large as O(N) in the worst 
case. Depending on the value of W, the time taken would vary from O(N) and O(N2).

Idea: We need to place an exact bound on the worst case value of W. 

0 1 0 1 0 1 0 1 0 1 0 1

Search string = 0 1 0

Collect all groups of windows that overlap and do the distance computations on O(M) 
time for each such group. Then, we have O(N+kM) time, where k=depth. 



If we have consecutive windows, we have to gain the same character we just lost. 
i.e for any overlapping window, we have the following property:

     X

     X'

Therefore, X and X' are permutations of each other. We can then possibly use suffix 
trees  in some way.

Idea: What if M is very small. It might then be practical to enumerate all the permutations 
in a table. A matrix of the scores would be maintained, and we use something resembling a 
finite state machine to walk from one window to another. 

This might be useful when M < (log 2/M)
There are about N possible windows.

   a

b



We could walk through this graph and keep track of the lowest weight node we hit as the 
best match.

Idea: Could be perform the computations for overlapping windows by using suffix trees? 

So now, can we do the incremental updating of the cost in constant or sub-linear time?

Event queue idea

  x
m1                m2             m3          m4

1 c c      c      c        c c       c N

      c          c                    c
        d1                     d2

      y1           y2                          y3

We number the characters in the string from 1 to N. 
For matching a character 'c', we have:

d1 = |l1 – y1|
d2 = |l2 – y2|
.....
dkc = |lkc – ykc|
_____________
∑
i=1
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kc
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Our cost is now di at each window using rubber bands. 



Events
• Rubber band hits zero i.e. We have a character match
• 'c' falls off to the left
• 'c' falls off to the right

To make the matching constant time, we need two types of rubber bands, ones to the left 
and ones to the right. For a left rubber band to change to a right rubber band, we must hit 
the zero state. 

x            + m1 + m2 + ... .    c

c


